
Design and Evaluation of a Metadata-Driven Adaptation Node1

1 Work partly supported by the IST European projects DANAE (IST-1-507113) and ENTHRONE (n° 038463)

Michael Ransburg, Christian Timmerer,
Hermann Hellwagner

ITEC, Klagenfurt University
<firstname>.<lastname>@itec.uni-klu.ac.at

Sylvain Devillers
France Telecom R&D

sylvain.devillers@orange-ftgroup.com

Abstract

MPEG-21 Digital Item Adaptation (DIA) allows for
a media codec agnostic multimedia adaptation
approach which enables the implementation of generic
adaptation engines. However, DIA is optimized for
static, server-based adaptation. In this paper we
introduce novel mechanisms to extend the DIA
approach towards dynamic and distributed scenarios.
This facilitates the placement of generic adaptation
nodes which perform media codec agnostic and
dynamic adaptation anywhere along the content
delivery path. To validate our work we implemented
such an adaptation node and evaluate its performance.

1. Motivation and State of the Art

Today's Internet is accessible to diverse end devices
through a high variety of network types. Independent
from this huge amount of usage contexts, content
consumers desire to retrieve content with the best
possible supported quality. The designers of new media
codecs react to this diversity of usage contexts by
including adaptation support into the codec design.
These scalable codecs support the generation of a
degraded version of the original bitstream by means of
simply removing bitstream segments. All these
variables (different end devices, network types, user
preferences, media codec types, scalability options)
lead to a manifold of needed and possible adaptation
operations. In order to encounter this complexity, DIA
[1] specifies a set of description tools (and related
processes) in order to describe the media content, the
adaptation possibilities and the usage context in the
XML domain, which enables media codec agnostic
adaptation as described in [2]. The relevant description
tools are: 1) The Bitstream Syntax Description (BSD),
which uses a generic language to describe, for instance,
the parts of a media content which may be removed for
scalability purposes. 2) The Adaptation Quality of
Service Description (AQoS), which describes how
(segments of) a media content need(s) to be adapted in
order to correspond to the various usage contexts, e.g.,

how many quality layers need to be dropped to
correspond to the currently available network
bandwidth. 3) The Usage Environment Descriptions
(UEDs) which describe the usage context, e.g., the
available network bandwidth.

The content-related metadata (BSD and AQoS) is
generated during the media encoding process and
bundled together with the media as a Digital Item as
depicted on the left side of Figure 2. A content creator
(e.g., a news agency) can sell this Digital Item to a
content provider (e.g., an Internet portal) which offers a
very high quality version of the media content, together
with the content-related metadata which describes how
to extract lower quality versions. The content creator
no longer needs to provide several versions of the
content and the content provider no longer needs to
keep many different versions of the content on its
servers.

While the DIA framework fits our problem scope, it
still comes with several limitations: The content-related
metadata can be of considerable size (in the
uncompressed domain sometimes as large as the
described media content), depending on the bitstream
syntax and the supported adaptation options.
Furthermore, with the current set of description tools,
any adaptation which is performed always impacts the
complete media content, because the content-related
metadata describes the complete media content. In
streaming scenarios this leads to 1) high memory
requirements, 2) a high start-up delay and 3) slow
reaction in case of a dynamically changing usage
context due to the need to parse the complete content-
related metadata into memory for the adaptation.
Additional startup delay occurs when multiple
adaptation steps may take place along the delivery
chain, since the complete content-related metadata
needs to be transported in advance. The current
mechanisms therefore only allow efficient application
of DIA in "download and play" scenarios and not in
streaming scenarios. Processing and delivering media
in a streamed (i.e., dynamic) fashion has many
advantages, e.g., minimized start up delay, and is

therefore commonly used to consume large media files
over the Internet. Additionally, server-centric
adaptation is only ideal if the problem which adaptation
tries to encounter occurs on the server or in its close
vicinity. It is generally better to perform adaptation
close to the location of the problem, since the
potentially high delay when adapting on the server to a
problem which occurs at the end device can be
disastrous to the quality of experience for the end user.

We therefore aim to extend the static, server-based
DIA mechanism to dynamic and distributed adaptation
of streaming media, while staying backwards-
compatible with the original mechanisms, i.e., this
extension shall sustain all of the benefits (in particular
being media codec agnostic) of the static mechanisms.
Additionally, an adaptation node which implements
this extended mechanism shall be efficient enough to
support concurrent media codec agnostic adaptations of
several media streams.

2. Proposed Enhancements

This section describes our proposed enhancements,
some of which (cf. Section 2.1) are currently
considered for standardization in [3] to extend the DIA
framework towards dynamic and distributed
adaptation, as depicted in Figure 2. The enhancements
can be categorized in three parts: 1) fragmentation and
timing of metadata, 2) encoding of metadata, and 3)
transport of metadata.

Please note that for completeness we also show the
media streaming architecture on the bottom of Figure 2,
which is implemented using existing solutions (e.g.,
hint tracks) and will therefore not be explained further.

2.1. Fragmentation and Timing of Metadata

Our enhancements in this area are based on an
insight which we gained when analyzing the DIA
framework: The processes, i.e., Adaptation Decision
Taking Engine (ADTE), XML Transformation and
BSDtoBin, in a DIA framework can principally be re-
used (without changes) for dynamic adaptation, as they
are all completely steered by metadata (e.g., AQoS,
BSD). The same process which is applied to the whole
media content [2], can be applied to a media segment
(e.g., an access unit - AU) if the metadata is designed
appropriately. As in DIA, whenever the usage context
changes during the real-time streaming session, the
ADTE needs to take a new adaptation decision /
parameter (based on AQoS and UEDs), which is valid
until the next usage context change occurs. This
adaptation decision is then the input to the XML
Transformation process, together with the BSD. The
transformed BSD then steers the BSDtoBin process in
order to adapt the media bitstream. The BSD and

AQoS, however, shall only describe the current media
segment which is about to be streamed out, rather than
the complete content (as it would be the case with the
static mechanism).

This requires that the content creator has a means to
describe the fragmentation of the content-related
metadata. There is also a need to describe the timing of
the metadata in order to enable its synchronized
delivery and processing with the media segments.

To this end, we introduce XML Streaming
Instructions (XSI), which provide the information
required for streaming an XML document by the
composition and timing of well-formed XML
fragments which can be consumed as such by the
intended processes (i.e., ADTE, XML Transformation,
BSDtoBin). These fragments are called Process Units
(PUs) and their definition of "being able to be
consumed as such" ensures the backwards
compatibility of our approach to the static DIA
mechanism.

Figure 2 shows that the Fragment process takes as
input the XML document to be streamed and a set of
XSIs provided as XML attributes with their own
namespace. The output of the Fragment process is a set
of timed PUs. A PU is specified by one element tagged
as anchorElement and by a puMode indicating how
other connected elements are aggregated to this anchor
to compose the PU. Several puModes are necessary,
since the structure of the content-related metadata
depends on the high-level structure of the media
content. Figure 1 gives an overview of the currently
defined puModes which we derived by analyzing the
high-level structure of a variety of scalable media
codecs [4][5][6]. The white node represents the anchor
element and depending on the puMode several more
nodes are included to compose a PU. It is important to
note that PUs may overlap, i.e. some elements
(including anchor elements) may belong to several PUs
in order to meet the requirement of being able to be
processed as such.

Figure 1: Examples for the different puModes

There are several more attributes which need to be
assigned to each PU for streamed processing: The
encodeAsRAP attribute is used to signal that the PU
should be encoded as a random access point (RAP) in
order to enable random access into an XML stream.
The timeScale attribute provides the number of ticks

Figure 2: A dynamic and distributed system for media codec agnostic multimedia adaptation

per second. The ptsDelta attribute specifies the
interval in time ticks after the preceding anchor
element. Alternatively, the pts attribute specifies the
absolute time of the anchor element as the number of
ticks since the origin. The timing can not only be
specified in ticks: the absTime attribute specifies the
absolute time of the anchor element. Its syntax and
semantics are specified according to the time scheme
used (absTimeScheme attribute), e.g., NPT or UTC.

2.2. Encoding of Metadata

In order to enable the adaptation mechanism to be
applied not only at the server, but anywhere along the
delivery chain, the PUs need to be streamed together
with the media data. As the PUs are still in the text-
domain, which is quite verbose, we investigated
several mechanisms to enable their efficient transport.

We differentiate three types of encoding /
compression algorithms: 1) General redundancy-
based algorithms have no knowledge about XML. For
XML-conscious algorithms there are two types: 2)
XML-syntax aware algorithms and 3) XML-schema
aware algorithms. In previous research [7][8] we
selected one candidate from each of these types for
our measurements: WinZip uses a hybrid of LZ77 and
Huffman coding algorithm which belongs to the first
type. XMLPPM uses an XML-syntax aware
algorithm and BiM uses an XML-schema aware
algorithm. BiM has built-in streaming support: Each
BiM AU only includes the changes to the previous
PU. The encodeAsRAP attribute can be used to steer
BiM to encode a PU as an independent BiM AU for
random access at specific intervals. For all PUs
between these random access points only the changes
are encoded into AUs. BSDs use the majority of
metadata bandwidth and therefore we restrict our
investigations to them. Our results [7][8] demonstrate
that BiM is superior to the other mechanisms. As a
result of these evaluations, the Encode process (as

depicted in the center of Figure 2) implements BiM as
an encoding mechanism for our content-related
metadata.

2.3. Transport of Metadata

After encoding the PUs into AUs, the media and
metadata AUs are packetized into packets (P't in the
center of Figure 2) for transport. We are using
dedicated RTP (IETF RFC 3550) streams suggested
by our previous research in this area [8]. In this step
the timing and RAP information provided by the XSIs
is used to steer the packetization process, e.g., by
including them into the RTP packet header. The XSIs
can be removed from the PUs for transport, in order
to save bandwidth. As depicted in the center of Figure
2 both the media and metadata AUs are then streamed
into the network, where an adaptation node can
perform additional adaptation steps, in the same way
as it is performed on the server side.

3. Evaluation

In order to validate our work, the system described
in Section 2 and depicted in Figure 2 was
implemented in C++ in the course of the EC IST FP6
project DANAE1 (IST-1-507113). Darwin Streaming
Server2 was used as a streamer and the modules
shown in Figure 2 were implemented as plug-ins. The
libxml XMLTextReader interface3 was used for
processing XML. In our measurements we evaluate if
our prototype implementation of a dynamic DIA
adaptation node can be utilized in a real-time
streaming scenario. To this end, we evaluate the CPU
and memory efficiency of the adaptation node in
Figure 2. All tests were performed on a Dell Optiplex

2 http://developer.apple.com/opensource/server/streaming
3 http://xmlsoft.org
4 http://www.tiler.com/FreeMeter

GX620 desktop with an Intel Pentium D 2.8 GHz
processor and 1024 MB of RAM using Windows XP
SP2 as an operating system. Time measurements were
performed using the ANSI-C clock method. CPU and
memory efficiency was evaluated using the
FreeMeter Professional logging software4.

Table 1 provides an overview of the test data.
Media and the corresponding BSDs for three different
media codecs were selected. MPEG-4 BSAC [5] is a
scalable audio codec, EZBC [6] is a scalable video
codec based on wavelets and MPEG-4 SVC [4] is a
scalable video codec based on conventional block
transforms which is currently being standardized in
MPEG.

Table 1: Characteristics of test data

 BSAC EZBC SVC
Media Size 12511 KB 450536 KB 538816 KB
Average AU Size 0,22 KB 197,86 KB 18,59 KB
BSD Size 196265 KB 144939 KB 123189 KB
Average PU Size 4,02 KB 63,80 KB 4,90 KB
Number of [A|P]Us 56100 2277 28980
Resolution N/A QCIF QCIF
Frame Rate 21 12,5 12,5
Length in Minutes 44,52 48,58 193,2

Table 2 shows measurements of the memory
utilization and CPU load of the adaptation node. For
this evaluation we assume a static AQoS. We request
a DI (consisting of media content and the
corresponding BSD) to the Request Forwarder
process which initializes the Adaptation Node and
forwards the request to the Content Selector, as
depicted in Figure 2. At the server-side Adaptation
Node, 1) BSD PUs are composed and timed, 2) media
AUs are adapted, 3) metadata is encoded and 4)
media and metadata is packetized and streamed into
the network. This is repeated until there are 5 DIs
(i.e., 10 streams) being processed concurrently. One
particular result which we derived from the
measurements is that the CPU load strongly depends
on the frame rate, e.g., the BSAC stream with a frame
rate of 21 and small PUs causes much more CPU load
than the EZBC with a frame rate of 12,5 and large
PUs. As can be seen from the measurements, the
adaptation node would be able to support several
more content streams (or contents with a higher
bitrate). With our enhancements the start-up /
adaptation delay averages at 6 seconds. This is mostly
due to static buffers being used on the player and on
the adaptation nodes and can be reduced by
optimizing these buffers, e.g., by adjusting their size
based on the average size of the [A|P]U. Without our
enhancements we measure a delay of 70 seconds
(BSAC), 208 seconds (EZBC) and 103 seconds

(SVC) at an available bandwidth of 1 Mbps.

Table 2: CPU load in percent and memory usage
in MB for processing several streams

 Number of Streams
 1 2 3 4 5
BSAC (CPU in %) 6,38 16,1 27,03 33,77 47,69
EZBC (CPU in %) 1,21 5 6,23 9,95 13
SVC (CPU in %) 0,62 2,67 2,87 4,79 5,62
BSAC (Memory in MB) 14,12 14,92 15,94 16,69 17,73
EZBC (Memory in MB) 15,01 17,4 20,53 21,1 22,06
SVC (Memory in MB) 15,76 16,76 17,83 18,47 19,19

4. Conclusion and Future Work

In this paper we showed that static, server-centric
DIA-based adaptation can be efficiently extended
towards dynamic and distributed application
scenarios in a backwards-compatible way. To this
end, we introduced a new language which enables the
streaming of an XML document by the composition
and timing of well-formed XML fragments which can
be consumed as such. This enabled us to implement a
media codec agnostic adaptation node, which may be
located anywhere along the content delivery path. We
then evaluated this prototype and showed that it is
efficient enough to support the concurrent adaptation
of several media streams on a standard computer.
The current synchronization mechanism relies on a
one-to-one relationship between media AUs and PUs.
Since PUs are usually much smaller than media AUs
this leads to processing (e.g., CPU) overhead. A more
flexible mechanism will be investigated.

5. References

[1] ISO/IEC 21000-7:2004: Digital Item Adaptation
[2] A. Vetro, "MPEG-21 Digital Item Adaptation:

Enabling Universal Multimedia Access", IEEE
Multimedia, pp. 84-87, January 2004

[3] ISO/IEC 2100-7:2004/FPDAmd 2: Dynamic and
Distributed Adaptation, 2006

[4] H. Schwarz, D. Marpe, T. Wiegand, "Overview of the
Scalable H.264/MPEG4-AVC Extension", ICIP,
October 2006

[5] H. Purnhagen, "An Overview of MPEG-4 Audio
Version 2", AES, September 1999

[6] S.-T. Hsiang, J. W. Woods, "Embedded image coding
using zeroblocks of subband/wavelet coefficients and
context modeling", DCC, May 2000

[7] C. Timmerer, I. Kofler, J. Liegl, H. Hellwagner, "An
evaluation of Existing metadata compression and
encoding technologies for MPEG-21 applications",
ISM, 2005

[8] M. Ransburg, C. Timmerer, H. Hellwagner, “Transport
Mechanisms for Metadata-driven Distributed
Multimedia Adaptation”, MSAN, 2005

